Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
1.
Parasit Vectors ; 17(1): 152, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519971

RESUMO

BACKGROUND: In the family Trypanosomatidae, the genus Trypanosoma contains protozoan parasites that infect a diverse range of hosts, including humans, domestic animals, and wildlife. Wild rodents, as natural reservoir hosts of various pathogens, play an important role in the evolution and emergence of Trypanosomatidae. To date, no reports are available on the trypanosomatid infection of pikas (Lagomorpha: Ochotonidae). METHODS: In this study, Mongolian pikas and their fleas were sampled at the China-Mongolia border, northwestern China. The samples were analyzed with polymerase chain reaction (PCR) and sequencing for the presence of Trypanosomatidae on the basis of both the 18S ribosomal RNA (18S rRNA) gene and the glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) gene. The morphology of trypomastigotes was also observed in peripheral blood smears by microscopy. RESULTS: Molecular and phylogenetic analyses revealed a new genotype of the Trypanosoma lewisi clade that was found both in pika blood and flea samples. This genotype, which probably represents a new species, was provisionally designated as "Trypanosoma sp. pika". In addition, a novel genotype belonging to the genus Blechomonas of Trypanosomatidae was detected in fleas. On the basis of its molecular and phylogenetic properties, this genotype was named Blechomonas luni-like, because it was shown to be the closest related to B. luni compared with other flea-associated trypanosomatids. CONCLUSIONS: To the best of our knowledge, this is the first study to report any trypanosomatid species in Mongolian pikas and their fleas. Further studies are needed to investigate the epidemiology of these protozoan parasites, as well as to evaluate their pathogenicity for humans or domestic animals.


Assuntos
Lagomorpha , Sifonápteros , Trypanosoma , Trypanosomatina , Animais , Humanos , Lagomorpha/parasitologia , Sifonápteros/parasitologia , Filogenia , China/epidemiologia , Trypanosoma/genética , Trypanosomatina/genética , Animais Domésticos , Gerbillinae
2.
BMC Genomics ; 25(1): 184, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365628

RESUMO

BACKGROUND: Almost all extant organisms use the same, so-called canonical, genetic code with departures from it being very rare. Even more exceptional are the instances when a eukaryote with non-canonical code can be easily cultivated and has its whole genome and transcriptome sequenced. This is the case of Blastocrithidia nonstop, a trypanosomatid flagellate that reassigned all three stop codons to encode amino acids. RESULTS: We in silico predicted the metabolism of B. nonstop and compared it with that of the well-studied human parasites Trypanosoma brucei and Leishmania major. The mapped mitochondrial, glycosomal and cytosolic metabolism contains all typical features of these diverse and important parasites. We also provided experimental validation for some of the predicted observations, concerning, specifically presence of glycosomes, cellular respiration, and assembly of the respiratory complexes. CONCLUSIONS: In an unusual comparison of metabolism between a parasitic protist with a massively altered genetic code and its close relatives that rely on a canonical code we showed that the dramatic differences on the level of nucleic acids do not seem to be reflected in the metabolisms. Moreover, although the genome of B. nonstop is extremely AT-rich, we could not find any alterations of its pyrimidine synthesis pathway when compared to other trypanosomatids. Hence, we conclude that the dramatic alteration of the genetic code of B. nonstop has no significant repercussions on the metabolism of this flagellate.


Assuntos
Parasitos , Trypanosoma brucei brucei , Trypanosomatina , Animais , Códon de Terminação , Eucariotos/genética , Código Genético , Parasitos/genética , Trypanosoma brucei brucei/genética , Trypanosomatina/genética
3.
Trends Parasitol ; 40(2): 96-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065790

RESUMO

The number of sequenced trypanosomatid genomes has reached a critical point so that they are now available for almost all genera and subgenera. Based on this, we inferred a phylogenomic tree and propose it as a framework to study trait evolution together with some examples of how to do it.


Assuntos
Trypanosomatina , Filogenia , Trypanosomatina/genética
4.
J Invertebr Pathol ; 203: 108047, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38142929

RESUMO

Trypanosomatids are obligatory parasites, some of which are responsible for important human and animal diseases, but the vast majority of trypanosomatids are restricted to invertebrate hosts. Isolation and in vitro cultivation of trypanosomatids from insect hosts enable their description, characterization, and subsequently genetic and genomic studies. However, exact nutritional requirements are still unknown for most trypanosomatids and thus very few defined media are available. This mini review provides information about the role of different ingredients, recommendations and advice on essential supplements and important physicochemical parameters of culture media with the aim of facilitating first attempts to cultivate insect-infesting trypanosomatids, with a focus on monoxenous trypanosomatids.


Assuntos
Trypanosomatina , Animais , Humanos , Trypanosomatina/genética , Insetos/parasitologia
5.
PLoS Pathog ; 19(12): e1011854, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38128049

RESUMO

Transmission of trypanosomatids to their mammalian hosts requires a complex series of developmental transitions in their insect vectors, including stable attachment to an insect tissue. While there are many ultrastructural descriptions of attached cells, we know little about the signaling events and molecular mechanisms involved in this process. Each trypanosomatid species attaches to a specific tissue in the insect at a particular stage of its life cycle. Attachment is mediated by the flagellum, which is modified to accommodate a filament-rich plaque within an expanded region of the flagellar membrane. Attachment immediately precedes differentiation to the mammal-infectious stage and in some cases a direct mechanistic link has been demonstrated. In this review, we summarize the current state of knowledge of trypanosomatid attachment in insects, including structure, function, signaling, candidate molecules, and changes in gene expression. We also highlight remaining questions about this process and how the field is poised to address them through modern approaches.


Assuntos
Trypanosomatina , Animais , Trypanosomatina/genética , Insetos , Flagelos/metabolismo , Mamíferos
6.
J Invertebr Pathol ; 201: 108004, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37839582

RESUMO

Bee trypanosomatids have not been widely studied due to the original belief that these organisms were not pathogenic to honey bees. However, trypanosomatids have been linked to increased winter mortality in honey bee colonies in recent years and it has been shown that these pathogens can shorten a honey bee worker's lifespan in laboratory conditions. These studies found that this mortality corresponded to dose-dependent infection. Although Lotmaria passim is the most prevalent species worldwide, the natural load in colonies remains poorly investigated. Here we describe a new highly specific and sensitive qPCR method that allows the differentiation and quantification of the parasitic load of each of the three most common trypanosomatid species described to date in honey bee colonies: L. passim, Crithidia mellificae, and Crithidia bombi. We have used this new method to analyze honey bee colonies in central Spain and confirm that L. passim is the most common species and the one with higher parasitic loads in the colonies, which increased over the years, being higher in spring than in autumn. Crithidia mellificae was present along the study, with the highest prevalence in autumn 2019 and lately it was only found in non-quantifiable loads. Crithidia bombi was not detected in any of the colonies analyzed.


Assuntos
Crithidia , Trypanosomatina , Abelhas , Animais , Crithidia/parasitologia , Espanha , Trypanosomatina/genética , Trypanosomatina/parasitologia
7.
BMC Biol ; 21(1): 191, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37697369

RESUMO

BACKGROUND: Trypanosomatids are parasitic flagellates well known because of some representatives infecting humans, domestic animals, and cultural plants. Many trypanosomatid species bear RNA viruses, which, in the case of human pathogens Leishmania spp., influence the course of the disease. One of the close relatives of leishmaniae, Leptomonas pyrrhocoris, has been previously shown to harbor viruses of the groups not documented in other trypanosomatids. At the same time, this species has a worldwide distribution and high prevalence in the natural populations of its cosmopolitan firebug host. It therefore represents an attractive model to study the diversity of RNA viruses. RESULTS: We surveyed 106 axenic cultures of L. pyrrhocoris and found that 64 (60%) of these displayed 2-12 double-stranded RNA fragments. The analysis of next-generation sequencing data revealed four viral groups with seven species, of which up to five were simultaneously detected in a single trypanosomatid isolate. Only two of these species, a tombus-like virus and an Ostravirus, were earlier documented in L. pyrrhocoris. In addition, there were four new species of Leishbuviridae, the family encompassing trypanosomatid-specific viruses, and a new species of Qinviridae, the family previously known only from metatranscriptomes of invertebrates. Currently, this is the only qinvirus with an unambiguously determined host. Our phylogenetic inferences suggest reassortment in the tombus-like virus owing to the interaction of different trypanosomatid strains. Two of the new Leishbuviridae members branch early on the phylogenetic tree of this family and display intermediate stages of genomic segment reduction between insect Phenuiviridae and crown Leishbuviridae. CONCLUSIONS: The unprecedented wide range of viruses in one protist species and the simultaneous presence of up to five viral species in a single Leptomonas pyrrhocoris isolate indicate the uniqueness of this flagellate. This is likely determined by the peculiarity of its firebug host, a highly abundant cosmopolitan species with several habits ensuring wide distribution and profuseness of L. pyrrhocoris, as well as its exposure to a wider spectrum of viruses compared to other trypanosomatids combined with a limited ability to transmit these viruses to its relatives. Thus, L. pyrrhocoris represents a suitable model to study the adoption of new viruses and their relationships with a protist host.


Assuntos
Vírus de RNA , Trypanosomatina , Animais , Humanos , Filogenia , Vírus de RNA/genética , Trypanosomatina/genética , Animais Domésticos , Sequenciamento de Nucleotídeos em Larga Escala
8.
BMC Genomics ; 24(1): 471, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605127

RESUMO

BACKGROUND: Protists of the family Trypanosomatidae (phylum Euglenozoa) have gained notoriety as parasites affecting humans, domestic animals, and agricultural plants. However, the true extent of the group's diversity spreads far beyond the medically and veterinary relevant species. We address several knowledge gaps in trypanosomatid research by undertaking sequencing, assembly, and analysis of genomes from previously overlooked representatives of this protistan group. RESULTS: We assembled genomes for twenty-one trypanosomatid species, with a primary focus on insect parasites and Trypanosoma spp. parasitizing non-human hosts. The assemblies exhibit sizes consistent with previously sequenced trypanosomatid genomes, ranging from approximately 18 Mb for Obscuromonas modryi to 35 Mb for Crithidia brevicula and Zelonia costaricensis. Despite being the smallest, the genome of O. modryi has the highest content of repetitive elements, contributing nearly half of its total size. Conversely, the highest proportion of unique DNA is found in the genomes of Wallacemonas spp., with repeats accounting for less than 8% of the assembly length. The majority of examined species exhibit varying degrees of aneuploidy, with trisomy being the most frequently observed condition after disomy. CONCLUSIONS: The genome of Obscuromonas modryi represents a very unusual, if not unique, example of evolution driven by two antidromous forces: i) increasing dependence on the host leading to genomic shrinkage and ii) expansion of repeats causing genome enlargement. The observed variation in somy within and between trypanosomatid genera suggests that these flagellates are largely predisposed to aneuploidy and, apparently, exploit it to gain a fitness advantage. High heterogeneity in the genome size, repeat content, and variation in chromosome copy numbers in the newly-sequenced species highlight the remarkable genome plasticity exhibited by trypanosomatid flagellates. These new genome assemblies are a robust foundation for future research on the genetic basis of life cycle changes and adaptation to different hosts in the family Trypanosomatidae.


Assuntos
Trypanosomatina , Animais , Trypanosomatina/genética , Tamanho do Genoma , Aclimatação , Agricultura , Aneuploidia
9.
Microb Ecol ; 86(4): 2655-2665, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37480517

RESUMO

Trypanosomatids form a group of high prevalence protozoa that parasitise honey bees, with Lotmaria passim as the predominant species worldwide. However, the knowledge about the ecology of trypanosomatids in isolated areas is limited. The Portuguese archipelagos of Madeira and Azores provide an interesting setting to investigate these parasites because of their geographic isolation, and because they harbour honey bee populations devoid of two major enemies: Varroa destructor and Nosema ceranae. Hence, a total of 661 honey bee colonies from Madeira and the Azores were analysed using different molecular techniques, through which we found a high prevalence of trypanosomatids despite the isolation of these islands. L. passim was the predominant species and, in most colonies, was the only one found, even on islands free of V. destructor and/or N. ceranae with severe restrictions on colony movements to prevent the spread of them. However, islands with V. destructor had a significantly higher prevalence of L. passim and, conversely, islands with N. ceranae did not shown any significant correlation with the trypanosomatid. Crithidia bombi was detected in Madeira and on three islands of the Azores, almost always coincident with L. passim. By contrast, Crithidia mellificae was not detected in any sample. A high-throughput sequencing analysis distinguished two main haplotypes of L. passim, which accounted for 98% of the total sequence reads. This work suggests that L. passim and C. bombi are parasites that have been associated with honey bees predating the spread of V. destructor and N. ceranae.


Assuntos
Criação de Abelhas , Trypanosomatina , Animais , Abelhas , Trypanosomatina/genética , Trypanosomatina/parasitologia , Crithidia/genética , Crithidia/parasitologia , Simbiose , Açores
10.
Parasit Vectors ; 16(1): 69, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788540

RESUMO

BACKGROUND: Trypanosomatid parasites are widely distributed in nature and can have a monoxenous or dixenous life-cycle. These parasites thrive in a wide number of insect orders, some of which have an important economic and environmental value, such as bees. The objective of this study was to develop a robust and sensitive real-time quantitative PCR (qPCR) assay for detecting trypanosomatid parasites in any type of parasitized insect sample. METHODS: A TaqMan qPCR assay based on a trypanosomatid-conserved region of the α-tubulin gene was standardized and evaluated. The limits of detection, sensitivity and versatility of the α-tubulin TaqMan assay were tested and validated using field samples of honeybee workers, wild bees, bumblebees and grasshoppers, as well as in the human infective trypanosomatid Leishmania major. RESULTS: The assay showed a detection limit of 1 parasite equivalent/µl and successfully detected trypanosomatids in 10 different hosts belonging to the insect orders Hymenoptera and Orthoptera. The methodology was also tested using honeybee samples from four apiaries (n = 224 worker honeybees) located in the Alpujarra region (Granada, Spain). Trypanosomatids were detected in 2.7% of the honeybees, with an intra-colony prevalence of 0% to 13%. Parasite loads in the four different classes of insects ranged from 40.6 up to 1.1 × 108 cell equivalents per host. CONCLUSIONS: These results show that the α-tubulin TaqMan qPCR assay described here is a versatile diagnostic tool for the accurate detection and quantification of trypanosomatids in a wide range of environmental settings.


Assuntos
Insetos , Leishmania major , Trypanosomatina , Animais , Insetos/parasitologia , Leishmania major/genética , Reação em Cadeia da Polimerase em Tempo Real , Trypanosomatina/genética , Tubulina (Proteína)/genética
11.
Curr Biol ; 33(1): 28-40.e7, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36480982

RESUMO

The trypanosomatid Angomonas deanei is a model to study endosymbiosis. Each cell contains a single ß-proteobacterial endosymbiont that divides at a defined point in the host cell cycle and contributes essential metabolites to the host metabolism. Additionally, one endosymbiont gene, encoding an ornithine cyclodeaminase (OCD), was transferred by endosymbiotic gene transfer (EGT) to the nucleus. However, the molecular mechanisms mediating the intricate host/symbiont interactions are largely unexplored. Here, we used protein mass spectrometry to identify nucleus-encoded proteins that co-purify with the endosymbiont. Expression of fluorescent fusion constructs of these proteins in A. deanei confirmed seven host proteins to be recruited to specific sites within the endosymbiont. These endosymbiont-targeted proteins (ETPs) include two proteins annotated as dynamin-like protein and peptidoglycan hydrolase that form a ring-shaped structure around the endosymbiont division site that remarkably resembles organellar division machineries. The EGT-derived OCD was not among the ETPs, but instead localizes to the glycosome, likely enabling proline production in the glycosome. We hypothesize that recalibration of the metabolic capacity of the glycosomes that are closely associated with the endosymbiont helps to supply the endosymbiont with metabolites it is auxotrophic for and thus supports the integration of host and endosymbiont metabolic networks. Hence, scrutiny of endosymbiosis-induced protein re-localization patterns in A. deanei yielded profound insights into how an endosymbiotic relationship can stabilize and deepen over time far beyond the level of metabolite exchange.


Assuntos
Bactérias , Trypanosomatina , Bactérias/genética , Trypanosomatina/genética , Trypanosomatina/metabolismo , Trypanosomatina/microbiologia , Simbiose/genética
12.
Front Cell Infect Microbiol ; 12: 998202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275020

RESUMO

Chagas disease (CD) is a parasitic zoonosis (Trypanosoma cruzi) that is endemic in Colombia. Vector control of Rhodnius prolixus, the main domestic T. cruzi vector, has been achieved in a large part of the area with historically vector transmission of CD. It is necessary to understand the ecological behavior characteristics of local native vectors to ensure sustainability of the vector control programs. To evaluate the long-term success of a recent vector control campaign in the Boyacá department (Colombia), we used a combined strategy of entomological surveillance with co-existing canine surveillance from ten rural villages within six municipalities of the Tenza valley region (Boyacá, Colombia): Chinavita, Garagoa, Guateque, Somondoco, Sutatenza and Tenza, with historical reports of R. prolixus and secondary vectors. Collected triatomines and canine whole blood were analyzed for T. cruzi infection and genotyping. Triatomine bugs specimens were evaluated for blood meal source. Canine serology was performed using two distinct antibody assays. In total, 101 Triatoma venosa were collected by active search in domestic and peridomestic habitats. A natural infection prevalence of 13.9% (14/101) and four feeding sources were identified: human, dog, rat, and hen. A frequency infection of 46.5% (40/87) was observed from two independent serological tests and T. cruzi DNA was detected in 14 dogs (16.4%). Only TcIsylvatic DTU was detected. The results suggest that T. venosa present eco-epidemiological characteristics to maintain the transmission of T. cruzi in Tenza valley. This species has reinfested the intervened households and it has an active role in domestic and peridomestic transmission of T. cruzi due to their infection rates and feeding behavior. Therefore, this species should be considered as epidemiologically relevant for vector control strategies. Moreover, there is a need for human serological studies to have a close up of risk they are exposed to.


Assuntos
Doença de Chagas , Rhodnius , Triatoma , Trypanosoma cruzi , Trypanosomatina , Humanos , Animais , Cães , Feminino , Ratos , Triatoma/parasitologia , Trypanosoma cruzi/genética , Rhodnius/genética , Rhodnius/parasitologia , Trypanosomatina/genética , Colômbia/epidemiologia , Galinhas/genética , Insetos Vetores/parasitologia , Doença de Chagas/epidemiologia , Doença de Chagas/prevenção & controle , Doença de Chagas/veterinária , DNA
13.
Sci Rep ; 12(1): 14436, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002553

RESUMO

Kala-azar/Visceral Leishmaniasis (VL) caused by Leishmania donovani (LD) is often associated with Leptomonas seymouri (LS) co-infection in India. Leptomonas seymouri narna-like virus 1 (Lepsey NLV1) has been reported in multi-passaged laboratory isolates of VL samples which showed LD-LS co-infection. A pertinent question was whether this virus of LS is detectable in direct clinical samples. DNA from the serum of twenty-eight LD diagnosed patients was subjected to LD-specific and LS-specific PCR to reconfirm the presence of LD parasites and to detect LD-LS co-infections. RNA extracted from same samples was subjected to RT-PCR, qRT-PCR and sequencing using virus-specific primers to detect/identify and quantify the virus. The presence of the virus was confirmed in thirteen of eighteen (72%) recently collected VL and PKDL samples. Cytokine profiling showed significantly elevated IL-18 in only LD infected patients compared to the virus-positive LD and control samples. IL-18 is crucial for Th1 and macrophage activation which eventually clears the parasite. The Lepsey NLV1 interaction with the immune system results in reduced IL-18 which favors LD survival and increased parasitic burden. The study emphasizes the need to revisit LD pathogenesis in the light of the association and persistence of a protozoan virus in kala-azar and PKDL patients.


Assuntos
Coinfecção , Leishmania donovani , Leishmaniose Cutânea , Leishmaniose Visceral , Trypanosomatina , Coinfecção/diagnóstico , Humanos , Índia , Interleucina-18 , Leishmania donovani/genética , Leishmaniose Visceral/parasitologia , Trypanosomatina/genética
14.
Parasitology ; 149(5): 654-666, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35115070

RESUMO

The vast majority of trypanosome species is vector-borne parasites, with some of them being medically and veterinary important (such as Trypanosoma cruzi and Trypanosoma brucei) and capable of causing serious illness in vertebrate hosts. The discovery of trypanosomes in bats emphasizes the importance of bats as an important reservoir. Interestingly, there is a hypothesis that bats are ancestral hosts of T. cruzi. Trypanosome diversity has never been investigated in bats in Thailand, despite being in a biodiversity hot spot. To gain a better understanding of the diversity and evolutionary relationship of trypanosomes, polymerase chain reaction-based surveys were carried out from 2018 to 2020 in 17 sites. A total of 576 bats were captured, representing 23 species. A total of 38 (6.6%) positive samples was detected in ten bat species. Trypanosoma dionisii and Trypanosoma noyesi were identified from Myotis siligorensis and Megaderma spasma, respectively. The remaining 18S rRNA sequences of trypanosomes were related to other trypanosomes previously reported elsewhere. The sequences in the current study showed nucleotide identity as low as 90.74% compared to those of trypanosomes in the GenBank database, indicating the possibility of new species. All bat trypanosomes identified in the current study fall within the T. cruzi clade. The current study adds to evidence linking T. noyesi to a bat trypanosome and further supports the bat host origin of the T. cruzi clade. To the best of authors' knowledge, this is the first study on bat trypanosomes in Thailand and their phylogenetic relationships with global isolates.


Assuntos
Quirópteros , Trypanosoma cruzi , Trypanosoma , Trypanosomatina , Animais , Quirópteros/parasitologia , DNA de Protozoário/genética , Filogenia , Tailândia/epidemiologia , Trypanosoma cruzi/genética , Trypanosomatina/genética
15.
Microb Ecol ; 84(3): 856-867, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34609533

RESUMO

Trypanosomatids are among the most prevalent parasites in bees but, despite the fact that their impact on the colonies can be quite important and that their infectivity may potentially depend on their genotypes, little is known about the population diversity of these pathogens. Here we cloned and sequenced three non-repetitive single copy loci (DNA topoisomerase II, glyceraldehyde-3-phosphate dehydrogenase and RNA polymerase II large subunit, RPB1) to produce new genetic data from Crithidia bombi, C. mellificae and Lotmaria passim isolated from honeybees and bumblebees. These were analysed by applying population genetic tools in order to quantify and compare their variability within and between species, and to obtain information on their demography and population structure. The general pattern for the three species was that (1) they were subject to the action of purifying selection on nonsynonymous variants, (2) the levels of within species diversity were similar irrespective of the host, (3) there was evidence of recombination among haplotypes and (4) they showed no haplotype structuring according to the host. C. bombi exhibited the lowest levels of synonymous variation (πS= 0.06 ± 0.04 %) - and a mutation frequency distribution compatible with a population expansion after a bottleneck - that contrasted with the extensive polymorphism displayed by C. mellificae (πS= 2.24 ± 1.00 %), which likely has a more ancient origin. L. passim showed intermediate values (πS= 0.40 ± 0.28 %) and an excess of variants a low frequencies probably linked to the spread of this species to new geographical areas.


Assuntos
Crithidia , Trypanosomatina , Abelhas , Animais , Crithidia/genética , Crithidia/parasitologia , Trypanosomatina/genética , Trypanosomatina/parasitologia , Genótipo , Variação Genética
16.
Commun Biol ; 4(1): 953, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376792

RESUMO

Major Intrinsic Proteins (MIPs) are membrane channels that permeate water and other small solutes. Some trypanosomatid MIPs mediate the uptake of antiparasitic compounds, placing them as potential drug targets. However, a thorough study of the diversity of these channels is still missing. Here we place trypanosomatid channels in the sequence-function space of the large MIP superfamily through a sequence similarity network. This analysis exposes that trypanosomatid aquaporins integrate a distant cluster from the currently defined MIP families, here named aquaporin X (AQPX). Our phylogenetic analyses reveal that trypanosomatid MIPs distribute exclusively between aquaglyceroporin (GLP) and AQPX, being the AQPX family expanded in the Metakinetoplastina common ancestor before the origin of the parasitic order Trypanosomatida. Synteny analysis shows how African trypanosomes specifically lost AQPXs, whereas American trypanosomes specifically lost GLPs. AQPXs diverge from already described MIPs on crucial residues. Together, our results expose the diversity of trypanosomatid MIPs and will aid further functional, structural, and physiological research needed to face the potentiality of the AQPXs as gateways for trypanocidal drugs.


Assuntos
Aquagliceroporinas/genética , Aquaporinas/genética , Proteínas de Protozoários/genética , Trypanosomatina/genética , Sequência de Aminoácidos , Aquagliceroporinas/química , Aquaporinas/química , Proteínas de Protozoários/química , Alinhamento de Sequência , Trypanosomatina/química
17.
Genes (Basel) ; 12(3)2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804709

RESUMO

While numerous genomes of Leishmania spp. have been sequenced and analyzed, an understanding of the evolutionary history of these organisms remains limited due to the unavailability of the sequence data for their closest known relatives, Endotrypanum and Porcisia spp., infecting sloths and porcupines. We have sequenced and analyzed genomes of three members of this clade in order to fill this gap. Their comparative analyses revealed only minute differences from Leishmaniamajor genome in terms of metabolic capacities. We also documented that the number of genes under positive selection on the Endotrypanum/Porcisia branch is rather small, with the flagellum-related group of genes being over-represented. Most significantly, the analysis of gene family evolution revealed a substantially reduced repertoire of surface proteins, such as amastins and biopterin transporters BT1 in the Endotrypanum/Porcisia species when compared to amastigote-dwelling Leishmania. This reduction was especially pronounced for δ-amastins, a subfamily of cell surface proteins crucial in the propagation of Leishmania amastigotes inside vertebrate macrophages and, apparently, dispensable for Endotrypanum/Porcisia, which do not infect such cells.


Assuntos
Proteínas de Membrana/genética , Trypanosomatina/classificação , Sequenciamento Completo do Genoma/métodos , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Leishmania/classificação , Leishmania/genética , Leishmania major/classificação , Leishmania major/genética , Filogenia , Proteínas de Protozoários/genética , Trypanosomatina/genética , Virulência
18.
Sci Rep ; 11(1): 9210, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911164

RESUMO

Angomonas deanei coevolves in a mutualistic relationship with a symbiotic bacterium that divides in synchronicity with other host cell structures. Trypanosomatid mitochondrial DNA is contained in the kinetoplast and is composed of thousands of interlocked DNA circles (kDNA). The arrangement of kDNA is related to the presence of histone-like proteins, known as KAPs (kinetoplast-associated proteins), that neutralize the negatively charged kDNA, thereby affecting the activity of mitochondrial enzymes involved in replication, transcription and repair. In this study, CRISPR-Cas9 was used to delete both alleles of the A. deanei KAP4 gene. Gene-deficient mutants exhibited high compaction of the kDNA network and displayed atypical phenotypes, such as the appearance of a filamentous symbionts, cells containing two nuclei and one kinetoplast, and division blocks. Treatment with cisplatin and UV showed that Δkap4 null mutants were not more sensitive to DNA damage and repair than wild-type cells. Notably, lesions caused by these genotoxic agents in the mitochondrial DNA could be repaired, suggesting that the kDNA in the kinetoplast of trypanosomatids has unique repair mechanisms. Taken together, our data indicate that although KAP4 is not an essential protein, it plays important roles in kDNA arrangement and replication, as well as in the maintenance of symbiosis.


Assuntos
Bactérias/metabolismo , Replicação do DNA , DNA de Cinetoplasto/genética , DNA de Protozoário/genética , Mitocôndrias/genética , Proteínas de Protozoários/genética , Trypanosomatina/genética , Divisão Celular , Núcleo Celular , DNA de Cinetoplasto/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA de Protozoário/metabolismo , Mitocôndrias/metabolismo , Proteínas de Protozoários/metabolismo , Simbiose , Trypanosomatina/metabolismo , Trypanosomatina/microbiologia
19.
Nucleic Acids Res ; 49(6): 3354-3370, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33660779

RESUMO

Uridine insertion/deletion (U-indel) editing of mitochondrial mRNA, unique to the protistan class Kinetoplastea, generates canonical as well as potentially non-productive editing events. While the molecular machinery and the role of the guide (g) RNAs that provide required information for U-indel editing are well understood, little is known about the forces underlying its apparently error-prone nature. Analysis of a gRNA:mRNA pair allows the dissection of editing events in a given position of a given mitochondrial transcript. A complete gRNA dataset, paired with a fully characterized mRNA population that includes non-canonically edited transcripts, would allow such an analysis to be performed globally across the mitochondrial transcriptome. To achieve this, we have assembled 67 minicircles of the insect parasite Leptomonas pyrrhocoris, with each minicircle typically encoding one gRNA located in one of two similar-sized units of different origin. From this relatively narrow set of annotated gRNAs, we have dissected all identified mitochondrial editing events in L. pyrrhocoris, the strains of which dramatically differ in the abundance of individual minicircle classes. Our results support a model in which a multitude of editing events are driven by a limited set of gRNAs, with individual gRNAs possessing an inherent ability to guide canonical and non-canonical editing.


Assuntos
Genoma de Protozoário , Edição de RNA , RNA Mensageiro/metabolismo , RNA Mitocondrial/metabolismo , Trypanosomatina/genética , Filogenia , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo , Transcriptoma , Trypanosomatina/metabolismo
20.
Parasitology ; 148(10): 1254-1270, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33612129

RESUMO

Telomeres are the ends of linear eukaryotic chromosomes facilitating the resolution of the 'end replication and protection' problems, associated with linearity. At the nucleotide level, telomeres typically represent stretches of tandemly arranged telomeric repeats, which vary in length and sequence among different groups of organisms. Recently, a composition of the telomere-associated protein complex has been scrutinized in Trypanosoma brucei. In this work, we subjected proteins from that list to a more detailed bioinformatic analysis and delineated a core set of 20 conserved proteins putatively associated with telomeres in trypanosomatids. Out of these, two proteins (Ku70 and Ku80) are conspicuously missing in representatives of the genus Blastocrithidia, yet telomeres in these species do not appear to be affected. In this work, based on the analysis of a large set of trypanosomatids widely different in their phylogenetic position and life strategies, we demonstrated that telomeres of trypanosomatids are diverse in length, even within groups of closely related species. Our analysis showed that the expression of two proteins predicted to be associated with telomeres (those encoding telomerase and telomere-associated hypothetical protein orthologous to Tb927.6.4330) may directly affect and account for the differences in telomere length within the species of the Leishmania mexicana complex.


Assuntos
Leishmania mexicana/genética , Telômero/metabolismo , Trypanosomatina/genética , Trypanosomatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...